## SolidWorks ${ }^{\circledR}$ tutorial 13-5 "Exciting"

## I ncludes SolidWorks SustainabilityXpress



## "A better world for our children and grandchildren"



Pre-vocational Secondary Education and Senior Secondary Vocational Education


Completed by: Nenad Raskovic

## Tutorial 13-5 <br> "Base Sheet"



SolidWorks for Pre-vocational Secondary Education and Senior Secondary Vocational Education Tutorial 13-5: Base sheet






| 9 | Draw a Centerline from the origin straight to the top. <br> 1. Click the function: Centerline: <br> 2. For the first point, click the origin. <br> 3. Then, draw a Centerline straight to the top, as in the figure. |  |
| :---: | :---: | :---: |
| 10 | We will now mirror the line. <br> Select: Mirror Entities |  |




| 15 | Enter the circle dimensions. <br> The circle has a diameter of $3,2 \mathrm{~mm}$ and a height of 76 mm as measured from the origin. |  |
| :---: | :---: | :---: |
| 16 | We want to add two more circles to the Sketch. To do this, use the command Circular Sketch Pattern. <br> 1. First, click the arrow to expand the menu. <br> 2. Select |  |

Now, do the following:

1. Set the number of copies to 3 .
```
#*
```

2. Check Equal Spacing.
```
Equal spacing
```

3. Uncheck Add dimensions.

Add dimensions
4. Click anywhere in the window Entities to Pattern.


The window is empty at first, but as soon as you click the components to be copied, the window displays the selected components.
5. Select a 3.2 mm circle.

6. Click OK.
(2)


You have just found out that using Linear Sketch Pattern or Circular Sketch Pattern will considerably reduce your drawing time.
You can easily add objects (lines, circles, rectangles, etc.) according to a specific pattern.


20 1. | Select the center of the |
| :--- |
| two lower circles. |

| 21 | First, make sure the Sheet Metal buttons are available. <br> The best way to do this is to add them to the Command Manager. <br> 1. With the right mouse button, click a tab in Command Manager. <br> 2. In the displayed menu, click: Sheet Metal. <br> ATTENTION!! If Sheet Metal is already checked in your system, continue to step 20. |  |
| :---: | :---: | :---: |
| 22 | 1. In: Command Manager, first click: Sheet Metal. <br> 2. Then, click Base Flange/Tab. |  |




## SolidWorks Sustainability Xpress


"A better world for our children and grandchildren"

As a developer/designer, you must take several aspects into account.
One of these aspects is the environmental impact of your design.
SolidWorks Sustainability Xpress allows you to understand and visualize the environmental impact of your designs and, if necessary, improve the design.
This includes carbon footprint calculation, ((Footprint) is a measure unit for CO 2 emissions), and real-time feedback on the product, which measures energy consumption during the production of the model as well as the effects on the air and water during production, enabling you to adapt your design and improve the final values.


In the next steps, you will learn how to use this new function.

| 27 | Before continuing to <br> SustainabilityXpress... <br> , please make sure this SolidWorks function has been installed on your computer. <br> 1. To open the menu, click the arrow in the Menu Bar: <br> 2. Next, click Tools: $\square$ Tools <br> 3. Make sure the function: $\qquad$ has been installed. <br> 4. If the function: Sustainability Xpress has already been installed, continue to the next step. Otherwise, follow the instructions below. |  |
| :---: | :---: | :---: |
|  |  | If you are using SolidWorks student Edition version 2009-2010, you must download the application from the following address: <br> http://www.solidworks.com/sw/education/7375_ENU_HTML.htm Be sure you download the appropriate version, as there are two versions for Windows: 32 bits and 64 bits. <br> If you are using SolidWorks student Edition version 2010-2011, you will find SustainabilityXpress under the tab Evaluate (1) then select SustainabilityXpress (2). |



Let us now take a more detailed look at how Sustainability Xpress works.

1. In step 26 , the material has already been defined as Aluminum 1060 Alloy. The software copied and pasted this automatically.

2. In the window:
Manufacturing you enter
this as: Process:

Stamped/Formed Sheetmetal
and for: Region: you select Asia. This defines how you want to manufacture and where the production will take place.
3. In the window:
 choose Europe as the Region. This indicates that the product will be used in Europe.
4. Under:

Environmental Impact
4 diagrams are displayed.
They describe the environmental impact of the product.


31
An important part of Sustainability Xpress is the window:

## Environmental Impact

As a designer, you can find here various types of information on the environmental impact of your product/design.

1. Clicking the arrows: (Bill display four detailed diagrams. They allow you to quickly review the environmental impact during production and transportation of the component.
E.g. Carbon Footprint

CO2 impact on the environment, e.g. greenhouse gas production.
E.g.

Energy Consumption The total amount of energy required to manufacture the product.

## E.g. Air Acidification

Impact on the air! In particular, contribution to acid rain.
E.g. Water Eutrophication

Impact on water!
Resulting in algal growth in coastal waters.


| 32 | Let us now change the production location to see how the environmental impact changes if the base sheet is not produced in Asia but rather somewhere else, for example in Europe. <br> 1. Change the: $\square$ Region: into Europe. |  |
| :---: | :---: | :---: |
| 33 | Now, watch the diagrams. There is a significant difference between the first and the second calculation. <br> The emission of: $\square$ Carbon This emission value is now lower than in the first calculation. <br> 1. Current (now) is green, meaning: better than the previous location. <br> 2. Previous, grey represents the first calculation, the previous production location. |  |



|  | 4. Let us choose a material with higher tensile strength. Click the scroll down menu and select greater than $>$. <br> 5. We will leave the yield value of the material unchanged $\sim$. <br> 6. Click Find Similar | Poissons Ratio - any-  <br> Tensile Strength $>$ $>$ <br> Yield Strength $\sim$ - <br>    <br> Yield Strength |
| :---: | :---: | :---: |
| 36 | 1. Double-click the option 1345 Alloy. This is almost the same material as the one you had chosen (1060 Alloy). There is, however, one important difference: the tensile strength is significantly higher. <br> 1345 Alloy <br> 2. The diagram section immediately displays the new calculation. It is identical to the old one. That is because the material is almost the same. <br> 3. You can now do the following: Accept, Edit or Cancel. <br> 4. Let us choose Edit because we want to know what will happen if we choose steel instead of aluminum. |  |




| 43 | Close the function: Sustainability Xpress. <br> 1. Click the red $x$ <br> 2. Now try a few other materials yourself to see which is the best solution (e.g. wood). |  |
| :---: | :---: | :---: |
| 44 | Now, make a drawing for use in the workshop. <br> 1. Click New: <br> 2. Select: $\square$ Diverse_template <br> 3. Click OK. ok |  |
| 45 | In the menu, choose: <br> 1. $\begin{aligned} & \text { A3_Vakcollege Dr } \\ & \text { A3_Vakcollege } \\ & \text { Dr_Knippenberg } \end{aligned}$ <br> Click OK. $\square$ ok |  |

46
An empty drawing field is displayed. Do the following to create views.

1. Click

View Layout Model
2. Click View to open the Property Manager model view.
3. Make sure the appropriate part has been selected.
4. If not, use the button

Browse... to
find the appropriate part.
5. Click the arrow
 continue.

1. In the menu:

Number of Views Select:
Multiple views. To position three views.
Number of Views
O single View
o Muittiple views
2. In the Qrientation menu, choose the front view, the side view and the isometric view. The selected views are displayed in grey.

3. For Display Style, choose Hidden Lines Visible.








